Program Listing for File track_kalman.hpp
↰ Return to documentation for file (codes/cubicle_detect/darknet_ros/track_kalman.hpp
)
#pragma once
#include "track.hpp"
#include <opencv2/opencv.hpp> // C++
#include "opencv2/core/version.hpp"
class track_kalman {
public:
cv::KalmanFilter kf;
int state_size, meas_size, contr_size;
track_kalman(int _state_size = 10, int _meas_size = 10, int _contr_size = 0)
: state_size(_state_size), meas_size(_meas_size), contr_size(_contr_size)
{
kf.init(state_size, meas_size, contr_size, CV_32F);
cv::setIdentity(kf.measurementMatrix);
cv::setIdentity(kf.measurementNoiseCov, cv::Scalar::all(1e-1));
cv::setIdentity(kf.processNoiseCov, cv::Scalar::all(1e-5));
cv::setIdentity(kf.errorCovPost, cv::Scalar::all(1e-2));
cv::setIdentity(kf.transitionMatrix);
}
void set(std::vector<bbox_t> result_vec) {
for (size_t i = 0; i < result_vec.size() && i < state_size*2; ++i) {
kf.statePost.at<float>(i * 2 + 0) = result_vec[i].x;
kf.statePost.at<float>(i * 2 + 1) = result_vec[i].y;
}
}
// Kalman.correct() calculates: statePost = statePre + gain * (z(k)-measurementMatrix*statePre);
// corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
std::vector<bbox_t> correct(std::vector<bbox_t> result_vec) {
cv::Mat measurement(meas_size, 1, CV_32F);
for (size_t i = 0; i < result_vec.size() && i < meas_size * 2; ++i) {
measurement.at<float>(i * 2 + 0) = result_vec[i].x;
measurement.at<float>(i * 2 + 1) = result_vec[i].y;
}
cv::Mat estimated = kf.correct(measurement);
for (size_t i = 0; i < result_vec.size() && i < meas_size * 2; ++i) {
result_vec[i].x = estimated.at<float>(i * 2 + 0);
result_vec[i].y = estimated.at<float>(i * 2 + 1);
}
return result_vec;
}
// Kalman.predict() calculates: statePre = TransitionMatrix * statePost;
// predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
std::vector<bbox_t> predict() {
std::vector<bbox_t> result_vec;
cv::Mat control;
cv::Mat prediction = kf.predict(control);
for (size_t i = 0; i < prediction.rows && i < state_size * 2; ++i) {
result_vec[i].x = prediction.at<float>(i * 2 + 0);
result_vec[i].y = prediction.at<float>(i * 2 + 1);
}
return result_vec;
}
};
class extrapolate_coords_t {
public:
std::vector<bbox_t> old_result_vec;
std::vector<float> dx_vec, dy_vec, time_vec;
std::vector<float> old_dx_vec, old_dy_vec;
void new_result(std::vector<bbox_t> new_result_vec, float new_time) {
old_dx_vec = dx_vec;
old_dy_vec = dy_vec;
if (old_dx_vec.size() != old_result_vec.size()) std::cout << "old_dx != old_res \n";
dx_vec = std::vector<float>(new_result_vec.size(), 0);
dy_vec = std::vector<float>(new_result_vec.size(), 0);
update_result(new_result_vec, new_time, false);
old_result_vec = new_result_vec;
time_vec = std::vector<float>(new_result_vec.size(), new_time);
}
void update_result(std::vector<bbox_t> new_result_vec, float new_time, bool update = true) {
for (size_t i = 0; i < new_result_vec.size(); ++i) {
for (size_t k = 0; k < old_result_vec.size(); ++k) {
if (old_result_vec[k].track_id == new_result_vec[i].track_id && old_result_vec[k].obj_id == new_result_vec[i].obj_id) {
float const delta_time = new_time - time_vec[k];
if (abs(delta_time) < 1) break;
size_t index = (update) ? k : i;
float dx = ((float)new_result_vec[i].x - (float)old_result_vec[k].x) / delta_time;
float dy = ((float)new_result_vec[i].y - (float)old_result_vec[k].y) / delta_time;
float old_dx = dx, old_dy = dy;
// if it's shaking
if (update) {
if (dx * dx_vec[i] < 0) dx = dx / 2;
if (dy * dy_vec[i] < 0) dy = dy / 2;
} else {
if (dx * old_dx_vec[k] < 0) dx = dx / 2;
if (dy * old_dy_vec[k] < 0) dy = dy / 2;
}
dx_vec[index] = dx;
dy_vec[index] = dy;
//if (old_dx == dx && old_dy == dy) std::cout << "not shakin \n";
//else std::cout << "shakin \n";
if (dx_vec[index] > 1000 || dy_vec[index] > 1000) {
//std::cout << "!!! bad dx or dy, dx = " << dx_vec[index] << ", dy = " << dy_vec[index] <<
// ", delta_time = " << delta_time << ", update = " << update << std::endl;
dx_vec[index] = 0;
dy_vec[index] = 0;
}
old_result_vec[k].x = new_result_vec[i].x;
old_result_vec[k].y = new_result_vec[i].y;
time_vec[k] = new_time;
break;
}
}
}
}
std::vector<bbox_t> predict(float cur_time) {
std::vector<bbox_t> result_vec = old_result_vec;
for (size_t i = 0; i < old_result_vec.size(); ++i) {
float const delta_time = cur_time - time_vec[i];
auto &bbox = result_vec[i];
float new_x = (float) bbox.x + dx_vec[i] * delta_time;
float new_y = (float) bbox.y + dy_vec[i] * delta_time;
if (new_x > 0) bbox.x = new_x;
else bbox.x = 0;
if (new_y > 0) bbox.y = new_y;
else bbox.y = 0;
}
return result_vec;
}
};